Sandwich boosting for accurate estimation in partially linear models for grouped data

Author:

Young Elliot H1,Shah Rajen D1ORCID

Affiliation:

1. Statistical Laboratory, University of Cambridge , Cambridge , UK

Abstract

Abstract We study partially linear models in settings where observations are arranged in independent groups but may exhibit within-group dependence. Existing approaches estimate linear model parameters through weighted least squares, with optimal weights (given by the inverse covariance of the response, conditional on the covariates) typically estimated by maximizing a (restricted) likelihood from random effects modelling or by using generalized estimating equations. We introduce a new ‘sandwich loss’ whose population minimizer coincides with the weights of these approaches when the parametric forms for the conditional covariance are well-specified, but can yield arbitrarily large improvements in linear parameter estimation accuracy when they are not. Under relatively mild conditions, our estimated coefficients are asymptotically Gaussian and enjoy minimal variance among estimators with weights restricted to a given class of functions, when user-chosen regression methods are used to estimate nuisance functions. We further expand the class of functional forms for the weights that may be fitted beyond parametric models by leveraging the flexibility of modern machine learning methods within a new gradient boosting scheme for minimizing the sandwich loss. We demonstrate the effectiveness of both the sandwich loss and what we call ‘sandwich boosting’ in a variety of settings with simulated and real-world data.

Funder

EPSRC

Publisher

Oxford University Press (OUP)

Reference55 articles.

1. Fitting linear mixed-effects models using lme4;Bates;Journal of Statistical Software,2015

2. Kaggle forecasting competitions: An overlooked learning opportunity;Bojer;International Journal of Forecasting,2021

3. Science and statistics;Box;Journal of the American Statistical Association,1976

4. Prediction games and arcing algorithms;Breiman;Neural Computation,1999

5. Boosting algorithms: Regularization, prediction and model fitting;Bühlmann;Statistical Science,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3