Full-model estimation for non-parametric multivariate finite mixture models

Author:

Du Roy de Chaumaray Marie1ORCID,Marbac Matthieu2ORCID

Affiliation:

1. Université de Rennes, CNRS, IRMAR—UMR 6625 , Rennes , France

2. Université de Rennes, Ensai, CNRS, CREST—UMR 9194 , Rennes , France

Abstract

Abstract This paper addresses the problem of full-model estimation for non-parametric finite mixture models. It presents an approach for selecting the number of components and the subset of discriminative variables (i.e. the subset of variables having different distributions among the mixture components) by considering an upper bound on the number of components (this number being allowed to increase with the sample size). The proposed approach considers a discretization of each variable into B bins and a penalization of the resulting log-likelihood. Considering that the number of bins tends to infinity as the sample size tends to infinity, we prove that our estimator of the model (number of components and subset of relevant variables for clustering) is consistent under a suitable choice of the penalty term. The relevance of our proposal is illustrated on simulated and benchmark data.

Publisher

Oxford University Press (OUP)

Reference57 articles.

1. Statistical predictor identification;Akaike;Annals of the Institute of Statistical Mathematics,1970

2. Identifiability of parameters in latent structure models with many observed variables;Allman;The Annals of Statistics,2009

3. Estimating first-price auctions with an unknown number of bidders: A misclassification approach;An;Journal of Econometrics,2010

4. Minimax theory for high-dimensional Gaussian mixtures with sparse mean separation;Azizyan;Neural Information Processing Systems, NIPS,2013

5. An EM-like algorithm for semi- and nonparametric estimation in multivariate mixtures;Benaglia;Journal of Computational and Graphical Statistics,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3