Affiliation:
1. Data Sciences and Operations Department, University of Southern California , Los Angeles , USA
Abstract
Abstract
Performance of classifiers is often measured in terms of average accuracy on test data. Despite being a standard measure, average accuracy fails in characterising the fit of the model to the underlying conditional law of labels given the features vector (Y∣X), e.g. due to model misspecification, over fitting, and high-dimensionality. In this paper, we consider the fundamental problem of assessing the goodness-of-fit for a general binary classifier. Our framework does not make any parametric assumption on the conditional law Y∣X and treats that as a black-box oracle model which can be accessed only through queries. We formulate the goodness-of-fit assessment problem as a tolerance hypothesis testing of the form H0:E[Df(Bern(η(X))‖Bern(η^(X)))]≤τ where Df represents an f-divergence function, and η(x), η^(x), respectively, denote the true and an estimate likelihood for a feature vector x admitting a positive label. We propose a novel test, called Goodness-of-fit with Randomisation and Scoring Procedure (GRASP) for testing H0, which works in finite sample settings, no matter the features (distribution-free). We also propose model-X GRASP designed for model-X settings where the joint distribution of the features vector is known. Model-X GRASP uses this distributional information to achieve better power. We evaluate the performance of our tests through extensive numerical experiments.
Publisher
Oxford University Press (OUP)
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Reference52 articles.
1. Controlling the false discovery rate via knockoffs;Barber;The Annals of Statistics,2015
2. Robust inference with knockoffs;Barber;The Annals of Statistics,2020
3. Metropolized knockoff sampling;Bates;Journal of the American Statistical Association,2021