Cluster extent inference revisited: quantification and localisation of brain activity

Author:

Goeman Jelle J1ORCID,Górecki Paweł2,Monajemi Ramin1,Chen Xu1,Nichols Thomas E34,Weeda Wouter5

Affiliation:

1. Biomedical Data Sciences, Leiden University Medical Center , Leiden , The Netherlands

2. Faculty of Mathematics, Informatics and Mechanics, Institute of Informatics, University of Warsaw , Warsaw , Poland

3. Nuffield Department of Population Health, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford , Oxford , UK

4. Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford , Oxford , UK

5. Methodology and Statistics, Psychology, Leiden University , Leiden , The Netherlands

Abstract

Abstract Cluster inference based on spatial extent thresholding is a popular analysis method multiple testing in spatial data, and is frequently used for finding activated brain areas in neuroimaging. However, the method has several well-known issues. While powerful for finding regions with some activation, the method as currently defined does not allow any further quantification or localisation of signal. In this paper, we repair this gap. We show that cluster-extent inference can be used (1) to infer the presence of signal in any region of interest and (2) to quantify the percentage of activation in such regions. These additional inferences come for free, i.e. they do not require any further adjustment of the alpha-level of tests, while retaining full family-wise error control. We achieve this extension of the possibilities of cluster inference by embedding the method into a closed testing procedure, and solving the graph-theoretic k-separator problem that results from this embedding. We demonstrate the usefulness of the improved method in a large-scale application to neuroimaging data from the Neurovault database.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3