ESTIMATION OF UNCERTAINTY IN MEASUREMENT OF DOSE EQUIVALENT AT LABORATORY LEVEL USING CASO4 :Dy-BASED TLD BADGE SYSTEM IN INDIA

Author:

Pradhan S M12,Datta D12,Pathan Munir S1,Srivastava Kshama1,Selvam T Palani12

Affiliation:

1. Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai 400 085, India

2. Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

Abstract

Abstract The objective of this paper is to estimate the combined uncertainty in the measurement of dose equivalent at laboratory level using CaSO4:Dy-based thermoluminescent dosemeter badge system by including variations in the components of the system. The variability of performance of the system is analysed using random effects one way analysis of variance model. The model enables estimation of the overall variance of the performance of the sampled population. The population in the study comprises all possible indicated dose equivalents on irradiation of dosemeters to a specific dose equivalent and radiation quality. Coefficient of variation and combined uncertainty at 95% level of confidence in the measurement of Hp(10) due to S-Cs radiation quality are found to be 6.6 and 14.3%, respectively, at the dose level of 5.31 mSv. The above parameters in the measurement of in-use quantity, i.e. whole body dose or photon dose equivalent are found to be 7.4 and 16.4%, respectively. The performance of the monitoring system on relative response has been observed to be satisfactory. Various factors affecting the variability of performance of the system are identified for further improvement in coefficient of variation.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,Radiology Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology

Reference23 articles.

1. Personnel dosemeter TLD badge based on CaSO4:Dy Teflon TLD discs;Vohra;Health Phys.,1980

2. Quality assurance of thermoluminescence based individual monitoring system for external radiations;Nagpal,1997

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3