Independent Size Expansions and Intron Proliferation in Red Algal Plastid and Mitochondrial Genomes

Author:

van Beveren Fabian1ORCID,Eme Laura1,López-García Purificación1ORCID,Ciobanu Maria1,Moreira David1ORCID

Affiliation:

1. Ecologie Systématique Evolution, Centre National de la Recherche Scientifique—CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France

Abstract

Abstract Proliferation of selfish genetic elements has led to significant genome size expansion in plastid and mitochondrial genomes of various eukaryotic lineages. Within the red algae, such expansion events are only known in the plastid genomes of the Proteorhodophytina, a highly diverse group of mesophilic microalgae. By contrast, they have never been described in the much understudied red algal mitochondrial genomes. Therefore, it remains unclear how widespread such organellar genome expansion events are in this eukaryotic phylum. Here, we describe new mitochondrial and plastid genomes from 25 red algal species, thereby substantially expanding the amount of organellar sequence data available, especially for Proteorhodophytina, and show that genome expansions are common in this group. We confirm that large plastid genomes are limited to the classes Rhodellophyceae and Porphyridiophyceae, which, in part, are caused by lineage-specific expansion events. Independently expanded mitochondrial genomes—up to three times larger than typical red algal mitogenomes—occur across Proteorhodophytina classes and a large shift toward high GC content occurred in the Stylonematophyceae. Although intron proliferation is the main cause of plastid and mitochondrial genome expansion in red algae, we do not observe recent intron transfer between different organelles. Phylogenomic analyses of mitochondrial and plastid genes from our expanded taxon sampling yielded well-resolved phylogenies of red algae with strong support for the monophyly of Proteorhodophytina. Our work shows that organellar genomes followed different evolutionary dynamics across red algal lineages.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Reference83 articles.

1. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists;Adl;J Eukaryot Microbiol.,2005

2. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs;Altschul;Nucleic Acids Res.,1997

3. FastQC: A quality control tool for high throughput sequence data;Andrews,2016

4. Palindromic repetitive elements in the mitochondrial genome of Volvox1;Aono;FEBS Lett.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3