Gene Loss may have Shaped the Cnidarian and Bilaterian Hox and ParaHox Complement

Author:

Steinworth Bailey M12ORCID,Martindale Mark Q12,Ryan Joseph F12ORCID

Affiliation:

1. Whitney Laboratory for Marine Bioscience, University of Florida , St Augustine, Florida 32080

2. Department of Biology, University of Florida , Gainesville, Florida 32611

Abstract

Abstract Hox and ParaHox transcription factors are important for specifying cell fates along the primary body axes during the development of most animals. Within Cnidaria, much of the research on Hox/ParaHox genes has focused on Anthozoa (anemones and corals) and Hydrozoa (hydroids) and has concentrated on the evolution and function of cnidarian Hox genes in relation to their bilaterian counterparts. Here we analyze together the full complement of Hox and ParaHox genes from species representing all four medusozoan classes (Staurozoa, Cubozoa, Hydrozoa, and Scyphozoa) and both anthozoan classes (Octocorallia and Hexacorallia). Our results show that Hox genes involved in patterning the directive axes of anthozoan polyps are absent in the stem leading to Medusozoa. For the first time, we show spatial and temporal expression patterns of Hox and ParaHox genes in the upside-down jellyfish Cassiopea xamachana (Scyphozoa), which are consistent with diversification of medusozoan Hox genes both from anthozoans and within medusozoa. Despite unprecedented taxon sampling, our phylogenetic analyses, like previous studies, are characterized by a lack of clear homology between most cnidarian and bilaterian Hox and Hox-related genes. Unlike previous studies, we propose the hypothesis that the cnidarian–bilaterian ancestor possessed a remarkably large Hox complement and that extensive loss of Hox genes was experienced by both cnidarian and bilaterian lineages.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3