Gene Structure-Based Homology Search Identifies Highly Divergent Putative Effector Gene Family

Author:

Stern David L.1ORCID,Han Clair1

Affiliation:

1. Janelia Research Campus of the Howard Hughes Medical Institute , 19700 Helix Drive, Ashburn, VA 20147, USA

Abstract

Abstract Homology of highly divergent genes often cannot be determined from sequence similarity alone. For example, we recently identified in the aphid Hormaphis cornu a family of rapidly evolving bicycle genes, which encode novel proteins implicated as plant gall effectors, and sequence similarity search methods yielded few putative bicycle homologs in other species. Coding sequence-independent features of genes, such as intron-exon boundaries, often evolve more slowly than coding sequences, however, and can provide complementary evidence for homology. We found that a linear logistic regression classifier using only structural features of bicycle genes identified many putative bicycle homologs in other species. Independent evidence from sequence features and intron locations supported homology assignments. To test the potential roles of bicycle genes in other aphids, we sequenced the genome of a second gall-forming aphid, Tetraneura nigriabdominalis and found that many bicycle genes are strongly expressed in the salivary glands of the gall forming foundress. In addition, bicycle genes are strongly overexpressed in the salivary glands of a non-gall forming aphid, Acyrthosiphon pisum, and in the non-gall forming generations of H. cornu. These observations suggest that Bicycle proteins may be used by multiple aphid species to manipulate plants in diverse ways. Incorporation of gene structural features into sequence search algorithms may aid identification of deeply divergent homologs, especially of rapidly evolving genes involved in host-parasite interactions.

Funder

Howard Hughes Medical Institute

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3