Affiliation:
1. University of Innsbruck, 6020 Innsbruck, Austria
Abstract
Abstract
We propose an explicit numerical method for the periodic Korteweg–de Vries equation. Our method is based on a Lawson-type exponential integrator for time integration and the Rusanov scheme for Burgers’ nonlinearity. We prove first-order convergence in both space and time under a mild Courant–Friedrichs–Lewy condition $\tau =O(h)$, where $\tau$ and $h$ represent the time step and mesh size for solutions in the Sobolev space $H^3((-\pi , \pi ))$, respectively. Numerical examples illustrating our convergence result are given.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Mathematics,General Mathematics
Reference39 articles.
1. Numerical solution of Korteweg–de Vries equation by Galerkin B-spline finite element method;Aksan;Appl. Math. Comput.,2006
2. A superconvergent finite element method for the Korteweg–de Vries equation;Arnold;Math. Comp.,1982
3. An exponential wave integrator sine pseudospectral method for the Klein–Gordon–Zakharov system;Bao;SIAM J. Sci. Comput.,2013
4. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations;Bourgain;Geom. Funct. Anal.,1993
5. Fourier methods with extended stability intervals for the Korteweg–de Vries equation;Chan;SIAM J. Numer. Anal.,1985
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献