Optimal rates of convergence and error localization of Gegenbauer projections

Author:

Wang Haiyong11

Affiliation:

1. School of Mathematics and Statistics, Huazhong University of Science and Technology , Wuhan 430074, P. R. China and Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

Abstract

Abstract Motivated by comparing the convergence behavior of Gegenbauer projections and best approximations, we study the optimal rate of convergence for Gegenbauer projections in the maximum norm. We show that the rate of convergence of Gegenbauer projections is the same as that of best approximations under conditions of the underlying function being either analytic on and within an ellipse and $\lambda \leqslant 0$ or differentiable and $\lambda \leqslant 1$, where $\lambda $ is the parameter in Gegenbauer projections. If the underlying function is analytic and $\lambda>0$ or differentiable and $\lambda>1$, then the rate of convergence of Gegenbauer projections is slower than that of best approximations by factors of $n^{\lambda }$ and $n^{\lambda -1}$, respectively. An exceptional case is functions with endpoint singularities, for which Gegenbauer projections and best approximations converge at the same rate for all $\lambda>-1/2$. For functions with interior or endpoint singularities, we provide a theoretical explanation for the error localization phenomenon of Gegenbauer projections and for why the accuracy of Gegenbauer projections is better than that of best approximations except in small neighborhoods of the critical points. Our analysis provides fundamentally new insight into the power of Gegenbauer approximations and related spectral methods.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference40 articles.

1. Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon;Adcock;Appl. Comput. Harmon. Anal.,2012

2. Approximation of functions by Fourier–Jacobi sums;Agahanov;Dokl. Akad. Nauk SSSR,1966

3. Sur l’ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné;Bernstein;Mem. Cl. Sci. Acad. Roy. Belg.,1912

4. The relationships between Chebyshev, Legendre and Jacobi polynomials: the generic superiority of Chebyshev polynomials and three important exceptions;Boyd;J. Sci. Comput.,2014

5. On rapid computation of expansions in ultraspherical polynomials;Cantero;SIAM J. Numer. Anal.,2012

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3