The error bounds of Gaussian quadratures for one rational modification of Chebyshev measures

Author:

Mutavdžić Djukić Rada M1

Affiliation:

1. Department of Mathematics, University of Belgrade , Faculty of Mechanical Engineering, Kraljice Marije 16, 11120, Serbia

Abstract

Abstract For an analytic integrand, the error term in the Gaussian quadrature can be represented as a contour integral, where the contour is commonly taken to be an ellipse. Thus, finding its upper bound can be reduced to finding the maximum of the modulus of the kernel on the ellipse. The location of this maximum was investigated in many special cases, particularly, for the Gaussian quadrature with respect to the Chebyshev measures modified by a quadratic divisor (known as the Bernstein–Szeg̋ measures). Here, for the Gaussian quadratures with respect to the Chebyshev measures modified by a linear over linear rational factor, we examine the kernel and describe sufficient conditions for the maximum to occur on the real axis. Furthermore, an assessment of the kernel is made in each case, since in some cases the true maximum is hard to reach. Hence, we derive the error bounds for these quadrature formulas. The results are illustrated by the numerical examples. An alternative approach for estimating the error of the Gaussian quadrature with respect to the same measure can be found in [Djukić, D. L., Djukić, R. M. M., Reichel, L. & Spalević, M. M. (2023, Weighted averaged Gaussian quadrature rules for modified Chebyshev measure. Appl. Numer. Math., ISSN 0168-9274)].

Publisher

Oxford University Press (OUP)

Reference13 articles.

1. On rational transformations of linear functionals: direct problem;Alfaro;J. Math. Anal. Appl.,2004

2. Error estimates of Gaussian-type quadrature formulae for analytic functions on ellipses: a survey of recent results;Djukić;Electron. Trans. Numer. Anal.,2020

3. Weighted averaged Gaussian quadrature rules for modified Chebyshev measure;Djukić;Appl. Numer. Math.,2023

4. A survey of Gauss-Christoffel quadrature formulae;Gautschi,1981

5. Orthogonal Polynomials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3