Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs

Author:

Mishra Siddhartha1,Molinaro Roberto2

Affiliation:

1. Seminar for Applied Mathematics, D-Math ETH Zürich, Rämistrasse 101, Zürich 8092, Switzerland

2. Seminar for Applied Mathematics (SAM), D-Math ETH Zürich, Rämistrasse 101, Zürich-8092, Switzerland

Abstract

Abstract Physics-informed neural networks (PINNs) have recently been very successfully applied for efficiently approximating inverse problems for partial differential equations (PDEs). We focus on a particular class of inverse problems, the so-called data assimilation or unique continuation problems, and prove rigorous estimates on the generalization error of PINNs approximating them. An abstract framework is presented and conditional stability estimates for the underlying inverse problem are employed to derive the estimate on the PINN generalization error, providing rigorous justification for the use of PINNs in this context. The abstract framework is illustrated with examples of four prototypical linear PDEs. Numerical experiments, validating the proposed theory, are also presented.

Funder

European Research Council Consolidator

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference63 articles.

1. The stability of the Cauchy problem for elliptic equations;Alessandrini;Inverse Problems,2009

2. Stability estimates for the Navier–Stokes equations and applications to inverse problems;Badra;Discrete Contin. Dyn. Syst. Ser. B,2016

3. Un example dutilization des notions de propagation pour le controle et al stabilisation de prolémes hyperboliques;Bardos;Rend. Sem. Math. Univ. Politec. Torino,1989

4. Universal approximation bounds for superpositions of a sigmoidal function;Barron;IEEE Trans. Inform. Theory.,1993

5. Global Carleman estimates for waves and applications;Baudouin;Commun. PDE,2013

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current density impedance imaging with PINNs;Journal of Computational and Applied Mathematics;2024-12

2. A new method to compute the blood flow equations using the physics-informed neural operator;Journal of Computational Physics;2024-12

3. Generalization of PINNs for elliptic interface problems;Applied Mathematics Letters;2024-11

4. Physics-informed deep learning of rate-and-state fault friction;Computer Methods in Applied Mechanics and Engineering;2024-10

5. Inf-sup neural networks for high-dimensional elliptic PDE problems;Journal of Computational Physics;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3