Trace operators of the bi-Laplacian and applications

Author:

Führer Thomas1,Haberl Alexander2,Heuer Norbert1

Affiliation:

1. Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile

2. Institute for Analysis and Scientific Computing, Technische Universität Wien, Austria

Abstract

Abstract We study several trace operators and spaces that are related to the bi-Laplacian. They are motivated by the development of ultraweak formulations for the bi-Laplace equation with homogeneous Dirichlet condition, but are also relevant to describe conformity of mixed approximations. Our aim is to have well-posed (ultraweak) formulations that assume low regularity under the condition of an $L_2$ right-hand side function. We pursue two ways of defining traces and corresponding integration-by-parts formulas. In one case one obtains a nonclosed space. This can be fixed by switching to the Kirchhoff–Love traces from Führer et al. (2019, An ultraweak formulation of the Kirchhoff–Love plate bending model and DPG approximation. Math. Comp., 88, 1587–1619). Using different combinations of trace operators we obtain two well-posed formulations. For both of them we report on numerical experiments with the discontinuous Petrov–Galerkin method and optimal test functions. In this paper we consider two and three space dimensions. However, with the exception of a given counterexample in an appendix (related to the nonclosedness of a trace space) our analysis applies to any space dimension larger than or equal to two.

Funder

Comisión Nacional de Investigación Científica y Tecnológica

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference25 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed finite elements for Kirchhoff–Love plate bending;Mathematics of Computation;2024-07-09

2. A DPG method for the quad-curl problem;Computers & Mathematics with Applications;2023-11

3. A DPG method for shallow shells;Numerische Mathematik;2022-08-16

4. A staggered cell-centered DG method for the biharmonic Steklov problem on polygonal meshes: A priori and a posteriori analysis;Computers & Mathematics with Applications;2022-07

5. DPG Methods for a Fourth-Order div Problem;Computational Methods in Applied Mathematics;2022-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3