Simple bespoke preservation of two conservation laws

Author:

Frasca-Caccia Gianluca1,Hydon Peter Ellsworth1

Affiliation:

1. School of Mathematics, Statistics and Actuarial Science University of Kent, Canterbury, UK

Abstract

Abstract Conservation laws are among the most fundamental geometric properties of a partial differential equation (PDE), but few known finite difference methods preserve more than one conservation law. All conservation laws belong to the kernel of the Euler operator, an observation that was first used recently to construct approximations symbolically that preserve two conservation laws of a given PDE. However, the complexity of the symbolic computations has limited the effectiveness of this approach. The current paper introduces some key simplifications that make the symbolic–numeric approach feasible. To illustrate the simplified approach we derive bespoke finite difference schemes that preserve two discrete conservation laws for the Korteweg–de Vries equation and for a nonlinear heat equation. Numerical tests show that these schemes are robust and highly accurate compared with others in the literature.

Funder

University of Edinburgh

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local structure-preserving algorithms for the nonlinear Schrödinger equation with power law nonlinearity;Applied Mathematics and Computation;2025-01

2. Fine tuning numerical schemes for PDEs;AIP Conference Proceedings;2024

3. Optimal Parameters for Numerical Solvers of PDEs;Journal of Scientific Computing;2023-09-07

4. Exponentially fitted methods with a local energy conservation law;Advances in Computational Mathematics;2023-07-03

5. Time-accurate and highly-stable explicit peer methods for stiff differential problems;Communications in Nonlinear Science and Numerical Simulation;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3