An analysis of the steepest descent method to efficiently compute the three-dimensional acoustic single-layer operator in the high-frequency regime

Author:

Gasperini D1,Beise H- P2,Schroeder U3,Antoine X4,Geuzaine C5

Affiliation:

1. IEE S.A ., Bissen, Luxembourg and Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France and University of Liège, Montefiore Institute B28, B-4000 Liège, Belgium

2. FB Informatik , Hochschule Trier, Schneidershof, 54293 Trier

3. IEE S.A. , 1 Rue de Campus, 7795 Bissen, Luxembourg

4. Université de Lorraine , CNRS, Inria, IECL, F-54000 Nancy, France

5. Institut Montefiore , Allée de la Découverte 10, 4000 Liège, Belgique

Abstract

Abstract Using the Cauchy integral theorem, we develop the application of the steepest descent method to efficiently compute the three-dimensional acoustic single-layer integral operator for large wave numbers. Explicit formulas for the splitting points are derived in the one-dimensional case to build suitable complex integration paths. The construction of admissible steepest descent paths is next investigated and some of their properties are stated. Based on these theoretical results, we derive the quadrature scheme of the oscillatory integrals first in dimension one and then extend the methodology to three-dimensional planar triangles. Numerical simulations are finally reported to illustrate the accuracy and efficiency of the proposed approach.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference34 articles.

1. An introduction to operator preconditioning for the fast iterative integral equation solution of time-harmonic scattering problems;Antoine;Multiscale Sci. Eng.,2021

2. A combined Filon/asymptotic quadrature method for highly oscillatory problems;Asheim;BIT Numer. Math.,2008

3. Applying the numerical method of steepest descent on multivariate oscillatory integrals in scattering theory;Asheim,(2013)

4. A remedy for the failure of the numerical steepest descent method on a class of oscillatory integrals;Asheim;BIT Numer. Math.,(2014)

5. A Gaussian quadrature rule for oscillatory integrals on a bounded interval;Asheim;Discr. Contin. Dynam. Syst. A,(2014)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3