Yet another fast variant of Newton’s method for nonconvex optimization

Author:

Gratton Serge1,Jerad Sadok2,Toint Philippe L3

Affiliation:

1. IRIT, Université de Toulouse, INP , Toulouse, 31000 , France

2. IRIT, Université de Toulouse, ANITI, INP , Toulouse. 31000 , France

3. NAXYS, University of Namur , Namur, 5000 , Belgium

Abstract

Abstract A class of second-order algorithms is proposed for minimizing smooth nonconvex functions that alternates between regularized Newton and negative curvature steps in an iteration-dependent subspace. In most cases, the Hessian matrix is regularized with the square root of the current gradient and an additional term taking moderate negative curvature into account, a negative curvature step being taken only exceptionally. Practical variants are detailed where the subspaces are chosen to be the full space, or Krylov subspaces. In the first case, the proposed method only requires the solution of a single linear system at nearly all iterations. We establish that at most $\mathcal{O}\big ( |\!\log \epsilon |\,\epsilon ^{-3/2}\big )$ evaluations of the problem’s objective function and derivatives are needed for algorithms in the new class to obtain an $\epsilon $-approximate first-order minimizer, and at most $\mathcal{O}\big (|\!\log \epsilon |\,\epsilon ^{-3}\big )$ to obtain a second-order one. Encouraging initial numerical experiments with two full-space and two Krylov-subspaces variants are finally presented.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3