A constructive low-regularity integrator for the one-dimensional cubic nonlinear Schrödinger equation under Neumann boundary condition

Author:

Bai Genming1,Li Buyang1,Wu Yifei2

Affiliation:

1. Department of Applied Mathematics , The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong

2. Center for Applied Mathematics , Tianjin University, 300072, Tianjin, P. R. China

Abstract

Abstract A new harmonic analysis technique using the Littlewood–Paley dyadic decomposition is developed for constructing low-regularity integrators for the one-dimensional cubic nonlinear Schrödinger equation in a bounded domain under Neumann boundary condition, when the frequency analysis based on the Fourier series cannot be used. In particular, a low-regularity integrator is constructively designed through the consistency analysis by the Littlewood–Paley decomposition of the solution, in order to have almost first-order convergence (up to a logarithmic factor) in the $L^{2}$ norm for $H^{1}$ initial data. A spectral method in space, using fast Fourier transforms with $\mathcal{O}(N\ln N)$ operations at every time level, is constructed without requiring any Courant-Friedrichs-Lewy (CFL) condition, where $N$ is the degrees of freedom in the spatial discretization. The proposed fully discrete method is proved to have an $L^{2}$-norm error bound of $\mathcal{O}(\tau [\ln (1/\tau )]^{2}+ N^{-1})$ for $H^{1}$ initial data, where $\tau $ is the time-step size.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference29 articles.

1. On an endpoint Kato–Ponce inequality;Bourgain;Differ. Integral Equ.,2014

2. Low regularity integrators via decorated trees;Bronsard,2022

3. Resonance based schemes for dispersive equations via decorated trees;Bruned;Forum Math. Pi,2022

4. Courant Lecture Notes in Mathematics 10;Cazenave,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low regularity error estimates for the time integration of 2D NLS;IMA Journal of Numerical Analysis;2024-09-12

2. Resonances as a Computational Tool;Foundations of Computational Mathematics;2024-07-26

3. Low-Regularity Integrator for the Davey–Stewartson II System;Journal of Scientific Computing;2024-02-26

4. A symmetric low-regularity integrator for the nonlinear Schrödinger equation;IMA Journal of Numerical Analysis;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3