Euler simulation of interacting particle systems and McKean–Vlasov SDEs with fully super-linear growth drifts in space and interaction

Author:

Chen Xingyuan1,dos Reis Gonçalo2

Affiliation:

1. School of Mathematics , University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK

2. Centro de Matemática e Aplicações (CMA) , FCT, UNL, 2829-516 Caparica, Portugal

Abstract

AbstractThis work addresses the convergence of a split-step Euler type scheme (SSM) for the numerical simulation of interacting particle Stochastic Differential Equation (SDE) systems and McKean–Vlasov stochastic differential equations (MV-SDEs) with full super-linear growth in the spatial and the interaction component in the drift, and nonconstant Lipschitz diffusion coefficient. Super-linearity is understood in the sense that functions are assumed to behave polynomially, but also satisfy a so-called one-sided Lipschitz condition. The super-linear growth in the interaction (or measure) component stems from convolution operations with super-linear growth functions, allowing in particular application to the granular media equation with multi-well confining potentials. From a methodological point of view, we avoid altogether functional inequality arguments (as we allow for nonconstant nonbounded diffusion maps). The scheme attains, in stepsize, a near-optimal classical (path-space) root mean-square error rate of $1/2-\varepsilon $ for $\varepsilon>0$ and an optimal rate $1/2$ in the nonpath-space (pointwise) mean-square error metric. All findings are illustrated by numerical examples. In particular, the testing raises doubts if taming is a suitable methodology for this type of problem (with convolution terms and nonconstant diffusion coefficients).

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3