High order approximations of the Cox–Ingersoll–Ross process semigroup using random grids

Author:

Alfonsi Aurélien1,Lombardo Edoardo2

Affiliation:

1. CERMICS, Ecole des Ponts, Marne-la-Vallée, France and MathRisk , Inria, Paris, France

2. CERMICS, Ecole des Ponts, Marne-la-Vallée, France, MathRisk , Inria, Paris, France and Università degli Studi di Roma Tor Vergata, Rome, Italy

Abstract

Abstract We present new high order approximations schemes for the Cox–Ingersoll–Ross (CIR) process that are obtained by using a recent technique developed by Alfonsi and Bally (2021, A generic construction for high order approximation schemes of semigroups using random grids. Numer. Math., 148, 743–793) for the approximation of semigroups. The idea consists in using a suitable combination of discretization schemes calculated on different random grids to increase the order of convergence. This technique coupled with the second order scheme proposed by Alfonsi (2010, High order discretization schemes for the CIR process: application to affine term structure and Heston models. Math. Comp., 79, 209–237) for the CIR leads to weak approximations of order $2k$, for all $k\in{{\mathbb{N}}}^{\ast }$. Despite the singularity of the square-root volatility coefficient, we show rigorously this order of convergence under some restrictions on the volatility parameters. We illustrate numerically the convergence of these approximations for the CIR process and for the Heston stochastic volatility model and show the computational time gain they give.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference16 articles.

1. On the discretization schemes for the CIR (and Bessel squared) processes;Alfonsi;Monte Carlo Methods Appl.,2005

2. High order discretization schemes for the CIR process: application to affine term structure and Heston models;Alfonsi;Math. Comp.,2010

3. Bocconi & Springer Series;Alfonsi,2015

4. A generic construction for high order approximation schemes of semigroups using random grids;Alfonsi;Numer. Math.,2021

5. Discretising the Heston model: an analysis of the weak convergence rate;Altmayer;IMA J. Numer. Anal.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3