A posteriori error estimation and space-time adaptivity for a linear stochastic PDE with additive noise

Author:

Majee Ananta K1,Prohl Andreas2

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

2. Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany

Abstract

Abstract We present a strong residual-based a posteriori error estimate for a finite element-based space-time discretization of the linear stochastic convected heat equation with additive noise. This error estimate is used for an adaptive algorithm that automatically selects deterministic mesh parameters in space and time. For every $n \geq 0$, we find a new time-step $\tau _n$, a new spatial mesh ${\mathcal M}_{n}$ terminating within finitely many iterations and a finite element value approximation $Y^n_h$ on this spatial mesh, which then approximates strongly the solution of the stochastic partial differential equation (SPDE) within a prescribed tolerance.

Funder

IIT Delhi, India

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust a posteriori estimates for the stochastic Cahn-Hilliard equation;Mathematics of Computation;2023-04-19

2. A Posteriori Estimates for the Stochastic Total Variation Flow;SIAM Journal on Numerical Analysis;2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3