A modified limited memory steepest descent method motivated by an inexact super-linear convergence rate analysis

Author:

Gu Ran1,Du Qiang1

Affiliation:

1. Department of Applied Physics and Applied Mathematics, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York City, NY, 10027, USA

Abstract

Abstract How to choose the step size of gradient descent method has been a popular subject of research. In this paper we propose a modified limited memory steepest descent method (MLMSD). In each iteration we propose a selection rule to pick a unique step size from a candidate set, which is calculated by Fletcher’s limited memory steepest descent method (LMSD), instead of going through all the step sizes in a sweep, as in Fletcher’s original LMSD algorithm. MLMSD is motivated by an inexact super-linear convergence rate analysis. The R-linear convergence of MLMSD is proved for a strictly convex quadratic minimization problem. Numerical tests are presented to show that our algorithm is efficient and robust.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference18 articles.

1. Two-point step size gradient methods;Barzilai;IMA J. Numer. Anal.,1988

2. Handling nonpositive curvature in a limited memory steepest descent method;Curtis;IMA J. Numer. Anal.,2015

3. R-linear convergence of limited memory steepest descent;Curtis;IMA J. Numer. Anal.,2017

4. On the nonmonotone line search;Dai;J. Optim. Theory Appl.,2002

5. Alternate step gradient method;Dai;Optimization,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyclic Gradient Methods for Unconstrained Optimization;Journal of the Operations Research Society of China;2022-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3