Adaptive finite element methods for sparse PDE-constrained optimization

Author:

Allendes A1,Fuica F1,Otárola E1

Affiliation:

1. Departamento de Matemática, Universidad Técnica Federico Santa María, Valparaíso, Chile

Abstract

Abstract We propose and analyse reliable and efficient a posteriori error estimators for an optimal control problem that involves a nondifferentiable cost functional, the Poisson problem as state equation and control constraints. To approximate the solution to the state and adjoint equations we consider a piecewise linear finite element method, whereas three different strategies are used to approximate the control variable: piecewise constant discretization, piecewise linear discretization and the so-called variational discretization approach. For the first two aforementioned solution techniques we devise an error estimator that can be decomposed as the sum of four contributions: two contributions that account for the discretization of the control variable and the associated subgradient and two contributions related to the discretization of the state and adjoint equations. The error estimator for the variational discretization approach is decomposed only in two contributions that are related to the discretization of the state and adjoint equations. On the basis of the devised a posteriori error estimators, we design simple adaptive strategies that yield optimal rates of convergence for the numerical examples that we perform.

Funder

Comisión Nacional de Investigación Científica y Tecnológica

Fondo Nacional de Desarrollo Científico y Tecnológico

Universidad Técnica Federico Santa María

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Posteriori Error Estimates for an Optimal Control Problem with a Bilinear State Equation;Journal of Optimization Theory and Applications;2022-05-13

2. A path-following inexact Newton method for PDE-constrained optimal control in BV;Computational Optimization and Applications;2022-05-11

3. A posteriori error estimates for semilinear optimal control problems;ESAIM: Mathematical Modelling and Numerical Analysis;2021-09

4. An adaptive finite element method for the sparse optimal control of fractional diffusion;Numerical Methods for Partial Differential Equations;2019-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3