Mixed finite elements for the Gross–Pitaevskii eigenvalue problem: a priori error analysis and guaranteed lower energy bound

Author:

Gallistl Dietmar1,Hauck Moritz2,Liang Yizhou3,Peterseim Daniel34

Affiliation:

1. Institute of Mathematics , University of Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany

2. Department of Mathematical Sciences , University of Gothenburg and Chalmers University of Technology, 41296 Göteborg, Sweden

3. Institute of Mathematics , University of Augsburg, Universitätsstr. 12a, 86159 Augsburg, Germany

4. Centre for Advanced Analytics and Predictive Sciences (CAAPS) , University of Augsburg, Universitätsstr. 12a, 86159 Augsburg, Germany

Abstract

Abstract We establish an a priori error analysis for the lowest-order Raviart–Thomas finite element discretization of the nonlinear Gross-Pitaevskii eigenvalue problem. Optimal convergence rates are obtained for the primal and dual variables as well as for the eigenvalue and energy approximations. In contrast to conforming approaches, which naturally imply upper energy bounds, the proposed mixed discretization provides a guaranteed and asymptotically exact lower bound for the ground state energy. The theoretical results are illustrated by a series of numerical experiments.

Funder

European Research Council

RandomMultiScales

Knut and Alice Wallenberg foundation postdoctoral program

Alexander von Humboldt Foundation

Publisher

Oxford University Press (OUP)

Reference47 articles.

1. Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials;Altmann;Math. Models Methods Appl. Sci.,2020

2. The J-method for the gross–Pitaevskii eigenvalue problem;Altmann;Numer. Math.,2021

3. Localization and delocalization of ground states of Bose-Einstein condensates under disorder;Altmann;SIAM J. Appl. Math.,2022

4. Energy-adaptive Riemannian optimization on the Stiefel manifold;Altmann;ESAIM Math. Model. Numer. Anal. (M2AN),2022

5. Riemannian newton methods for energy minimization problems of Kohn-sham type;Altmann,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3