Affiliation:
1. School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
2. Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing 100193, China
Abstract
Abstract
Time-fractional initial-boundary value problems of the form $D_t^\alpha u-p \varDelta u +cu=f$ are considered, where $D_t^\alpha u$ is a Caputo fractional derivative of order $\alpha \in (0,1)$ and the spatial domain lies in $\mathbb{R}^d$ for some $d\in \{1,2,3\}$. As $\alpha \to 1^-$ we prove that the solution $u$ converges, uniformly on the space-time domain, to the solution of the classical parabolic initial-boundary value problem where $D_t^\alpha u$ is replaced by $\partial u/\partial t$. Nevertheless, most of the rigorous analyses of numerical methods for this time-fractional problem have error bounds that blow up as $\alpha \to 1^-$, as we demonstrate. We show that in some cases these analyses can be modified to obtain robust error bounds that do not blow up as $\alpha \to 1^-$.
Funder
National Natural Science Foundation of China
Ocean University of China
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Mathematics,General Mathematics
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献