An a priori error analysis of adjoint-based super-convergent Galerkin approximations of linear functionals

Author:

Cockburn Bernardo1,Xia Shiqiang1

Affiliation:

1. School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

Abstract We present the first a priori error analysis of a new method proposed in Cockburn & Wang (2017, Adjoint-based, superconvergent Galerkin approximations of linear functionals. J. Comput. Sci., 73, 644–666), for computing adjoint-based, super-convergent Galerkin approximations of linear functionals. If $J(u)$ is a smooth linear functional, where $u$ is the solution of a steady-state diffusion problem, the standard approximation $J(u_h)$ converges with order $h^{2k+1}$, where $u_h$ is the Hybridizable Discontinuous Galerkin approximation to $u$ with polynomials of degree $k>0$. In contrast, numerical experiments show that the new method provides an approximation that converges with order $h^{4k}$, and can be computed by only using twice the computational effort needed to compute $J(u_h)$. Here, we put these experimental results in firm mathematical ground. We also display numerical experiments devised to explore the convergence properties of the method in cases not covered by the theory, in particular, when the solution $u$ or the functional $J(\cdot )$ are not very smooth. We end by indicating how to extend these results to the case of general Galerkin methods.

Funder

U.S. National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference30 articles.

1. An optimal control approach to a posteriori error estimation in finite element methods;Becker;Acta Numerica,2001

2. Higher order local accuracy by averaging in the finite element method;Bramble;Math. Comp.,1977

3. Two families of mixed finite elements for second order elliptic problems;Brezzi;Numer. Math.,1985

4. $hp$-version discontinuous Galerkin methods on essentially arbitrarily-shaped elements;Cangiani,2019

5. Adaptive discontinuous Galerkin methods for elliptic interface problems;Cangiani;Math. Comp.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3