Martingale product estimators for sensitivity analysis in computational statistical physics

Author:

Plecháč Petr1,Stoltz Gabriel2,Wang Ting3

Affiliation:

1. Department of Mathematical Sciences, University of Delaware , Newark, DE 19716, USA

2. CERMICS, Ecole des Ponts, Marne-la-Vallée , 77455 France, and MATHERIALS team-project, Inria Paris, France

3. Physical Modeling and Simulation Branch, CISD, DEVCOM Army Research Laboratory , Aberdeen Proving Ground, MD 21005, USA

Abstract

Abstract We introduce a new class of estimators for the linear response of steady states of stochastic dynamics. We generalize the likelihood ratio approach and formulate the linear response as a product of two martingales, hence the name ‘martingale product estimators’. We present a systematic derivation of the martingale product estimator, and show how to construct such estimator so that its bias is consistent with the weak order of the numerical scheme that approximates the underlying stochastic differential equation. Motivated by the estimation of transport properties in molecular systems, we present a rigorous numerical analysis of the bias and variance for these new estimators in the case of Langevin dynamics. We prove that the variance is uniformly bounded in time and derive a specific form of the estimator for second-order splitting schemes for Langevin dynamics. For comparison, we also study the bias and variance of a Green–Kubo (GK) estimator, motivated, in part, by its variance growing linearly in time. We compare on illustrative numerical tests the new estimators with results obtained by the GK method.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference40 articles.

1. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics;Arampatzis;J. Chem. Phys.,2016

2. Flux in tilted potential systems: negative resistance and persistence;Baryshnikov,2021

3. Hypocoercivity with Schur complements;Bernard;Ann. Henri Lebesgue,2022

4. Non-equilibrium molecular dynamics;Ciccotti,2005

5. Hypocoercivity for linear kinetic equations conserving mass;Dolbeault;Trans. AMS,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Error Estimates and Variance Reduction for Nonequilibrium Stochastic Dynamics;Springer Proceedings in Mathematics & Statistics;2024

2. Extending the Regime of Linear Response with Synthetic Forcings;Multiscale Modeling & Simulation;2023-11-14

3. Mobility Estimation for Langevin Dynamics Using Control Variates;Multiscale Modeling & Simulation;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3