Regularized HSS iteration methods for stabilized saddle-point problems

Author:

Bai Zhong-Zhi1

Affiliation:

1. State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, P. R. China

Abstract

Abstract We extend the regularized Hermitian and skew-Hermitian splitting (RHSS) iteration methods for standard saddle-point problems to stabilized saddle-point problems and establish the corresponding unconditional convergence theory for the resulting methods. Besides being used as stationary iterative solvers, this class of RHSS methods can also be used as preconditioners for Krylov subspace methods. It is shown that the eigenvalues of the corresponding preconditioned matrix are clustered at a small number of points in the interval $(0, \, 2)$ when the iteration parameter is close to $0$ and, furthermore, they can be clustered near $0$ and $2$ when the regularization matrix is appropriately chosen. Numerical results on stabilized saddle-point problems arising from finite element discretizations of an optimal boundary control problem and of a Cahn–Hilliard image inpainting problem, as well as from the Gauss–Newton linearization of a nonlinear image restoration problem, show that the RHSS iteration method significantly outperforms the Hermitian and skew-Hermitian splitting iteration method in iteration counts and computing times when they are used either as linear iterative solvers or as matrix splitting preconditioners for Krylov subspace methods, and optimal convergence behavior can be achieved when using inexact variants of the proposed RHSS preconditioners.

Funder

National Natural Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3