A pressure-robust HHO method for the solution of the incompressible Navier–Stokes equations on general meshes

Author:

Castanon Quiroz Daniel123,Di Pietro Daniele A3

Affiliation:

1. Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas , Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria C.P. 04510 Cd. Mx., México

2. Université Côte d’Azur , CNRS, Inria Team Coffee, LJAD, Nice 06000, France

3. IMAG, Univ Montpellier , CNRS, Montpellier 34090, France

Abstract

Abstract In a recent work (Castanon Quiroz & Di Pietro (2020) A hybrid high-order method for the incompressible Navier–Stokes problem robust for large irrotational body forces. Comput. Math. Appl., 79, 2655–2677), we have introduced a pressure-robust hybrid high-order method for the numerical solution of the incompressible Navier–Stokes equations on matching simplicial meshes. Pressure-robust methods are characterized by error estimates for the velocity that are fully independent of the pressure. A crucial question was left open in that work, namely whether the proposed construction could be extended to general polytopal meshes. In this paper, we provide a positive answer to this question. Specifically, we introduce a novel divergence-preserving velocity reconstruction that hinges on the solution inside each element of a mixed problem on a subtriangulation, then use it to design discretizations of the body force and convective terms that lead to pressure robustness. An in-depth theoretical study of the properties of this velocity reconstruction, and their reverberation on the scheme, is carried out for arbitrary polynomial degrees $k\geq 0$ and meshes composed of general polytopes. The theoretical convergence estimates and the pressure robustness of the method are confirmed by an extensive panel of numerical examples.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference53 articles.

1. Towards pressure-robust mixed methods for the incompressible Navier–Stokes equations;Ahmed;Comput. Methods Appl. Math.,2018

2. Finite Element Exterior Calculus

3. A note on the poincaré inequality for convex domains;Bebendorf;Z. Anal. Anwend.,2003

4. Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes;Beirão da Veiga,2022

5. The Stokes complex for virtual elements in three dimensions;Beirão da Veiga;Math. Models Methods Appl. Sci.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A pressure-robust numerical scheme for the Stokes equations based on the WOPSIP DG approach;Journal of Computational and Applied Mathematics;2024-08

2. A pressure-robust Discrete de Rham scheme for the Navier–Stokes equations;Computer Methods in Applied Mechanics and Engineering;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3