Finite element approximation of Hamilton–Jacobi–Bellman equations with nonlinear mixed boundary conditions

Author:

Jaroszkowski Bartosz1,Jensen Max2

Affiliation:

1. Department of Mathematics, University of Sussex , Falmer Campus, Brighton BN1 9QH, UK

2. Mathematics Department, University College London , 25 Gordon Street, London WC1H 0AY, UK

Abstract

Abstract We show strong uniform convergence of monotone P1 finite element methods to the viscosity solution of isotropic parabolic Hamilton–Jacobi–Bellman equations with mixed boundary conditions on unstructured meshes and for possibly degenerate diffusions. Boundary operators can generally be discontinuous across face-boundaries and type changes. Robin-type boundary conditions are discretized via a lower Dini derivative. In time, the Bellman equation is approximated through IMEX schemes. Existence and uniqueness of numerical solutions follows through Howard’s algorithm.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference20 articles.

1. A semi-Lagrangian scheme for mean curvature motion with nonlinear Neumann conditions;Achdou;Interfaces Free Bound.,2012

2. Convergence of approximation schemes for fully nonlinear second order equations;Barles;Asymptot. Anal.,1991

3. A viscosity solution approach to the Monge–Ampere formulation of the optimal transportation problem;Benamou,2012

4. Classics in Applied Mathematics;Berman,1994

5. Some convergence results for Howard’s algorithm;Bokanowski;SIAM J. Numer. Anal.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3