Affiliation:
1. Institut de Statistique, Université de Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland denis.devaud@unine.ch
Abstract
Abstract
We analyse a class of variational space-time discretizations for a broad class of initial boundary value problems for linear, parabolic evolution equations. The space-time variational formulation is based on fractional Sobolev spaces of order $1/2$ and the Riemann–Liouville derivative of order $1/2$ with respect to the temporal variable. It accommodates general, conforming space discretizations and naturally accommodates discretization of infinite horizon evolution problems. We prove an inf-sup condition for $hp$-time semidiscretizations with an explicit expression of stable test functions given in terms of Hilbert transforms of the corresponding trial functions; inf-sup constants are independent of temporal order and the time-step sequences, allowing quasi-optimal, high-order discretizations on graded time-step sequences, and also $hp$-time discretizations. For solutions exhibiting Gevrey regularity in time and taking values in certain weighted Bochner spaces, we establish novel exponential convergence estimates in terms of $N_t$, the number of (elliptic) spatial problems to be solved. The space-time variational setting allows general space discretizations and, in particular, for spatial $hp$-FEM discretizations. We report numerical tests of the method for model problems in one space dimension with typical singular solutions in the spatial and temporal variable. $hp$-discretizations in both spatial and temporal variables are used without any loss of stability, resulting in overall exponential convergence of the space-time discretization.
Funder
Swiss National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Mathematics,General Mathematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献