Randomized exponential integrators for modulated nonlinear Schrödinger equations

Author:

Hofmanová Martina1,Knöller Marvin2,Schratz Katharina3

Affiliation:

1. Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany

2. Fakultät für Mathematik, Karlsruhe Institute of Technology, Englerstr. 2, 76131 Karlsruhe, Germany

3. School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, Currie EH14 4AS, UK

Abstract

Abstract We consider the nonlinear Schrödinger equation with dispersion modulated by a (formal) derivative of a time-dependent function with fractional Sobolev regularity of class $W^{\alpha ,2}$ for some $\alpha \in (0,1)$. Due to the loss of smoothness in the problem, classical numerical methods face severe order reduction. In this work, we develop and analyze a new randomized exponential integrator based on a stratified Monte Carlo approximation. The new discretization technique averages the high oscillations in the solution allowing for improved convergence rates of order $\alpha +1/2$. In addition, the new approach allows us to treat a far more general class of modulations than the available literature. Numerical results underline our theoretical findings and show the favorable error behavior of our new scheme compared to classical methods.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference32 articles.

1. Soliton perturbations and the random Kepler problem;Abdullaev;Phys. D,2000

2. Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration;Abdulle,2018

3. Effective approximation for the semiclassical Schrödinger equation;Bader;Found. Comput. Math.,2014

4. Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion;Belaouar;Stoch. Partial Differ. Equ. Anal. Comput.,2015

5. Order estimates in time of splitting methods for the nonlinear Schrödinger equation;Besse;SIAM J. Numer. Anal.,2002

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantifying the Effect of Random Dispersion for Logarithmic Schrödinger Equation;SIAM/ASA Journal on Uncertainty Quantification;2024-06-07

2. Mathematical analysis of a randomized method for fractional Carathéodory type equation with time‐irregular coefficients;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-02-13

3. Approximated exponential integrators for the stochastic Manakov equation;Journal of Computational Dynamics;2023

4. Strong Rates of Convergence of a Splitting Scheme for Schrödinger Equations with Nonlocal Interaction Cubic Nonlinearity and White Noise Dispersion;SIAM/ASA Journal on Uncertainty Quantification;2022-03

5. Space-Time Approximation of Stochastic $p$-Laplace-Type Systems;SIAM Journal on Numerical Analysis;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3