On the convergence of a finite volume method for the Navier–Stokes–Fourier system

Author:

Feireisl Eduard12,Lukáčová-Medviďová Mária3,Mizerová Hana14,She Bangwei15

Affiliation:

1. Institute of Mathematics, Czech Academy of Sciences, žitná 25, CZ-115 67 Praha 1, Czech Republic

2. Technische Universität Berlin, Straße des 17, Juni, Berlin 10 587, Germany

3. Institute of Mathematics, Johannes Gutenberg University Mainz, Staudingerweg 9, 55 128 Mainz, Germany

4. Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics of the Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia

5. Department of Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18675 Praha 8, Czech Republic

Abstract

Abstract The goal of the paper is to study the convergence of finite volume approximations of the Navier–Stokes–Fourier system describing the motion of compressible, viscous and heat-conducting fluids. The numerical flux uses upwinding with an additional numerical diffusion of order $\mathcal O(h^{ \varepsilon +1})$, $0<\varepsilon <1$. The approximate solutions are piecewise constant functions with respect to the underlying polygonal mesh. We show that the numerical solutions converge strongly to the classical solution as long as the latter exists. On the other hand, any uniformly bounded sequence of numerical solutions converges unconditionally to the classical solution of the Navier–Stokes–Fourier system without assuming a priori its existence. A similar unconditional convergence result is obtained for a sequence of numerical solutions with uniformly bounded densities and temperatures if the bulk viscosity vanishes.

Funder

Czech Sciences Foundation

RVO

Deutsche Forschungsgemeinschaft

Waves to Weather

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference39 articles.

1. A version of the fundamental theorem for Young measures;Ball,1989

2. A direct Eulerian GRP scheme for compressible fluid flows;Ben-Artzi;J. Comput. Phys.,2006

3. Stability of strong solutions to the Navier–Stokes–Fourier system;Březina;SIAM J. Math. Anal.,2020

4. TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework;Cockburn;Math. Comp.,1989

5. Springer Series in Computational Mathematics;Dolejší,2015

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3