An adaptively enriched coarse space for Schwarz preconditioners for P1 discontinuous Galerkin multiscale finite element problems

Author:

Eikeland Erik1,Marcinkowski Leszek2,Rahman Talal1

Affiliation:

1. Department of Computing, Mathematics and Physics, Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway

2. Department of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Abstract

Abstract In this paper, we propose a two-level additive Schwarz domain decomposition preconditioner for the symmetric interior penalty Galerkin method for a second-order elliptic boundary value problem with highly heterogeneous coefficients. A specific feature of this preconditioner is that it is based on adaptively enriching its coarse space with functions created by solving generalized eigenvalue problems on thin patches covering the subdomain interfaces. It is shown that the condition number of the underlined preconditioned system is independent of the contrast if an adequate number of functions are used to enrich the coarse space. Numerical results are provided to confirm this claim.

Funder

Polish Scientific Grant: National Science Center

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference45 articles.

1. Substructuring preconditioners for an $h$-$p$ domain decomposition method with interior penalty mortaring;Antonietti;Calcolo,2015

2. Schwarz methods for a preconditioned WOPSIP method for elliptic problems;Antonietti;Comput. Methods Appl. Math.,2012

3. Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains;Antonietti;J. Sci. Comput.,2014

4. A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for $hp$-version discontinuous Galerkin methods;Antonietti;Int. J. Numer. Anal. Model.,2016

5. Unified analysis of discontinuous Galerkin methods for elliptic problems;Arnold;SIAM J. Numer. Anal.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3