Numerical solution of an H (curl)-elliptic hemivariational inequality

Author:

Han Weimin1,Ling Min2,Wang Fei2

Affiliation:

1. Department of Mathematics , University of Iowa, Iowa City, IA 52242, USA

2. School of Mathematics and Statistics , Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

Abstract

Abstract This paper is concerned with the analysis and numerical solution of an $\boldsymbol {H}({\textbf {curl}})$-elliptic hemivariational inequality (HVI). One source of the HVI is through a temporal semidiscretization of a related hyperbolic Maxwell equation problem. An equivalent minimization principle is introduced, and the solution existence and uniqueness of the $\boldsymbol {H}({\textbf {curl}})$-elliptic HVI are proved. Numerical analysis of the HVI is provided with a general Galerkin approximation, including a Céa’s inequality for convergence and error estimation. When the linear edge finite element method is employed, an optimal-order error estimate is derived under a suitable solution regularity assumption. A fully discrete scheme based on the backward Euler difference in time and a mixed finite element method in space is also analyzed, and stability estimates are derived for first-order terms of the fully discrete solution. Numerical results are reported on linear edge finite element solutions of the $\boldsymbol {H}({\textbf {curl}})$-elliptic HVI for numerical evidence of the theoretically predicted convergence order.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference35 articles.

1. An analytical and numerical approach to a bilateral contact problem with nonmonotone friction;Barboteu;Int. J. Appl. Math. Comput. Sci.,2013

2. Dual formulations in critical state problems;Barrett;Interfaces Free Bound.,2006

3. Sandpiles and superconductors: nonconforming linear finite element approximations for mixed formulations of quasi-variational inequalities;Barrett;IMA J. Numer. Anal.,2015

4. Magnetization of hard superconductors;Bean;Phys. Rev. Lett.,1962

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3