A mini immersed finite element method for two-phase Stokes problems on Cartesian meshes

Author:

Ji Haifeng12,Liang Dong3,Zhang Qian4

Affiliation:

1. School of Science, Nanjing University of Posts and Telecommunications , Nanjing, Jiangsu 210023 , China

2. Key Laboratory of NSLSCS, Ministry of Education, Nanjing Normal University , Nanjing, Jiangsu 210023 , China

3. Department of Mathematics and Statistics, York University , Toronto, ON M3J 1P3 , Canada

4. School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine , Nanjing, Jiangsu 210023 , China

Abstract

Abstract This paper presents a mini immersed finite element (IFE) method for solving two- and three-dimensional two-phase Stokes problems on Cartesian meshes. The IFE space is constructed from the conventional mini element, with shape functions modified on interface elements according to interface jump conditions while keeping the degrees of freedom unchanged. Both discontinuous viscosity coefficients and surface forces are taken into account in the construction. The interface is approximated using discrete level set functions, and explicit formulas for IFE basis functions and correction functions are derived, facilitating ease of implementation.The inf-sup stability and the optimal a priori error estimate of the IFE method, along with the optimal approximation capabilities of the IFE space, are derived rigorously, with constants that are independent of the mesh size and the manner in which the interface intersects the mesh, but may depend on the discontinuous viscosity coefficients. Additionally, it is proved that the condition number has the usual bound independent of the interface. Numerical experiments are provided to confirm the theoretical results.

Funder

NSFC

Ministry of Education Key Laboratory of NSLSCS

National Natural Science Youth Fund of Nanjing University of Chinese Medicine

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3