Analysis of a mixed discontinuous Galerkin method for the time-harmonic Maxwell equations with minimal smoothness requirements

Author:

Liu Kaifang1,Gallistl Dietmar2,Schlottbom Matthias1,van der Vegt J J W1

Affiliation:

1. Department of Applied Mathematics , University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

2. Institut für Mathematik , Universität Jena, 07743 Jena, Germany

Abstract

Abstract An error analysis of a mixed discontinuous Galerkin (DG) method with lifting operators as numerical fluxes for the time-harmonic Maxwell equations with minimal smoothness requirements is presented. The key difficulty in the error analysis for the DG method is that due to the low regularity the tangential trace of the exact solution is not well defined on the faces of the computational mesh. This difficulty is addressed by adopting the face-to-cell lifting introduced by Ern & Guermond (2021, Quasi-optimal nonconforming approximation of elliptic PDEs with contrasted coefficients and $H^{1+r}$, $r>0$, regularity. Found. Comput. Math., 1–36). To obtain optimal local interpolation estimates, we introduce Scott–Zhang-type interpolations that are well defined for $H(\textrm {curl})$ and $H(\textrm {div})$ functions with minimal regularity requirements. As a by-product of penalizing the lifting of the tangential jumps, an explicit and easily computable stabilization parameter is given.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference39 articles.

1. Unified analysis of discontinuous Galerkin methods for elliptic problems;Arnold;SIAM J. Numer. Anal.,2002

2. A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere R, Dibelius G, editors. 2nd;Bassi,1997

3. Adaptive finite element methods for elliptic equations with non-smooth coefficients;Bernardi;Numer. Math.,2000

4. Mixed Finite Element Methods and Applications

5. Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains;Bonito;J. Math. Anal. Appl.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3