Hybrid high-order discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary conditions

Author:

Cascavita Karol L1,Chouly Franz2,Ern Alexandre1

Affiliation:

1. Université Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée cedex 2, France and INRIA Paris, 75589 Paris, France

2. Université Bourgogne Franche-Comté, Institut de Mathématiques de Bourgogne, 21078 Dijon, France

Abstract

Abstract We present two primal methods to weakly discretize (linear) Dirichlet and (nonlinear) Signorini boundary conditions in elliptic model problems. Both methods support polyhedral meshes with nonmatching interfaces and are based on a combination of the hybrid high-order (HHO) method and Nitsche’s method. Since HHO methods involve both cell unknowns and face unknowns, this leads to different formulations of Nitsche’s consistency and penalty terms, either using the trace of the cell unknowns (cell version) or using directly the face unknowns (face version). The face version uses equal-order polynomials for cell and face unknowns, whereas the cell version uses cell unknowns of one order higher than the face unknowns. For Dirichlet conditions, optimal error estimates are established for both versions. For Signorini conditions, optimal error estimates are proven only for the cell version. Numerical experiments confirm the theoretical results and also reveal optimal convergence for the face version applied to Signorini conditions.

Funder

Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference69 articles.

1. A hybrid high-order method for incremental associative plasticity with small deformations;Abbas,2019

2. Hybrid high-order methods for finite deformations of hyperelastic materials;Abbas;Comput. Mech.,2018

3. Méthode de Newton généralisée en mécanique du contact;Alart;J. Math. Pures Appl.,1997

4. The nonconforming virtual element method;Ayuso de Dios;ESAIM Math. Model. Numer. Anal.,2016

5. Hybrid finite element methods for the Signorini problem;Ben Belgacem;Math. Comp.,2003

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3