Mixed precision low-rank approximations and their application to block low-rank LU factorization

Author:

Amestoy Patrick1,Boiteau Olivier2,Buttari Alfredo3,Gerest Matthieu45,Jézéquel Fabienne6,L’Excellent Jean-Yves1,Mary Theo7

Affiliation:

1. Mumps Technologies , ENS Lyon, 46 Allée d’Italie, F-69007 Lyon, France

2. EDF R&D , F-91120 Palaiseau, France

3. CNRS, IRIT , 2 Rue Charles Camichel, F-31071 Toulouse, France

4. EDF R&D and Sorbonne Université , CNRS, LIP6, Paris F-75005, France

5. EDF R&D and Sorbonne Université , CNRS, LIP6

6. Sorbonne Université , CNRS, LIP6 and Université Paris-Panthéon-Assas, Paris F-75005, France

7. Sorbonne Université , CNRS, LIP6, Paris F-75005, France

Abstract

AbstractWe introduce a novel approach to exploit mixed precision arithmetic for low-rank approximations. Our approach is based on the observation that singular vectors associated with small singular values can be stored in lower precisions while preserving high accuracy overall. We provide an explicit criterion to determine which level of precision is needed for each singular vector. We apply this approach to block low-rank (BLR) matrices, most of whose off-diagonal blocks have low rank. We propose a new BLR LU factorization algorithm that exploits the mixed precision representation of the blocks. We carry out the rounding error analysis of this algorithm and prove that the use of mixed precision arithmetic does not compromise the numerical stability of the BLR LU factorization. Moreover, our analysis determines which level of precision is needed for each floating-point operation (flop), and therefore guides us toward an implementation that is both robust and efficient. We evaluate the potential of this new algorithm on a range of matrices coming from real-life problems in industrial and academic applications. We show that a large fraction of the entries in the LU factors and flops to perform the BLR LU factorization can be safely switched to lower precisions, leading to significant reductions of the storage and expected time costs, of up to a factor three using fp64, fp32, and bfloat16 arithmetics.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference35 articles.

1. Geostatistical modeling and prediction using mixed precision tile Cholesky factorization;Abdulah,2019

2. Data-driven mixed precision sparse matrix vector multiplication for GPUs;Ahmad;ACM Trans. Archit. Code Optim.,2019

3. Improving multifrontal methods by means of block low-rank representations;Amestoy;SIAM J. Sci. Comput.,2015

4. Five-precision GMRES-based iterative refinement;Amestoy,2021

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Precision Sparse Matrix–Vector Product and Its Application to Krylov Solvers;SIAM Journal on Scientific Computing;2024-01-25

2. Communication Avoiding Block Low-Rank Parallel Multifrontal Triangular Solve with Many Right-Hand Sides;SIAM Journal on Matrix Analysis and Applications;2024-01-12

3. Mixed Precision Randomized Low-Rank Approximation with GPU Tensor Cores;Lecture Notes in Computer Science;2024

4. Reduced-Precision and Reduced-Exponent Formats for Accelerating Adaptive Precision Sparse Matrix–Vector Product;Lecture Notes in Computer Science;2024

5. Mixed and Multi-Precision SpMV for GPUs with Row-wise Precision Selection;2022 IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3