Stability of convergence rates: kernel interpolation on non-Lipschitz domains

Author:

Wenzel Tizian1,Santin Gabriele2,Haasdonk Bernard1

Affiliation:

1. Institute for Applied Analysis and Numerical Simulation , University of Stuttgart, Stuttgart, 70569, Germany

2. Department of Environmental Sciences , Informatics and Statistics, Ca’ Foscari University of Venice, Venice, 30123, Italy

Abstract

Abstract Error estimates for kernel interpolation in Reproducing Kernel Hilbert Spaces usually assume quite restrictive properties on the shape of the domain, especially in the case of infinitely smooth kernels like the popular Gaussian kernel. In this paper we prove that it is possible to obtain convergence results (in the number of interpolation points) for kernel interpolation for arbitrary domains $\varOmega \subset{\mathbb{R}} ^{d}$, thus allowing for non-Lipschitz domains including e.g., cusps and irregular boundaries. Especially we show that, when going to a smaller domain $\tilde{\varOmega } \subset \varOmega \subset{\mathbb{R}} ^{d}$, the convergence rate does not deteriorate—i.e., the convergence rates are stable with respect to going to a subset. We obtain this by leveraging an analysis of greedy kernel algorithms. The impact of this result is explained on the examples of kernels of finite as well as infinite smoothness. A comparison to approximation in Sobolev spaces is drawn, where the shape of the domain $\varOmega $ has an impact on the approximation properties. Numerical experiments illustrate and confirm the analysis.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3