Design and convergence analysis of numerical methods for stochastic evolution equations with Leray–Lions operator

Author:

Droniou Jérôme1,Goldys Beniamin2,Le Kim-Ngan1

Affiliation:

1. School of Mathematics, Monash University, Clayton, Victoria 3800, Australia

2. School of Mathematics and Statistics, and The University of Sydney Nano Institute, The University of Sydney, Sydney 2006, Australia

Abstract

Abstract The gradient discretization method (GDM) is a generic framework, covering many classical methods (finite elements, finite volumes, discontinuous Galerkin, etc.), for designing and analysing numerical schemes for diffusion models. In this paper we study the GDM for a general stochastic evolution problem based on a Leray–Lions type operator. The problem contains the stochastic $p$-Laplace equation as a particular case. The convergence of the gradient scheme (GS) solutions is proved by using discrete functional analysis techniques, Skorohod theorem and the Kolmogorov test. In particular, we provide an independent proof of the existence of weak martingale solutions for the problem. In this way we lay foundations and provide techniques for proving convergence of the GS approximating stochastic partial differential equations.

Funder

Australian Government

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference52 articles.

1. Similarity solutions in some non-linear diffusion problems and in boundary-layer flow of a pseudo-plastic fluid;Atkinson;Q. J. Mech. Appl. Math.,1974

2. The nonconforming virtual element method;Ayuso de Dios;ESAIM Math. Model. Numer. Anal.,2016

3. A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–Gilbert equation;Banas;IMA J. Numer. Anal.,2014

4. Computational studies for the stochastic Landau–Lifshitz–Gilbert equation;Banas;SIAM J. Sci. Comput.,2013

5. Finite element approximation of the $p$-Laplacian;Barrett;Math. Comp.,1993

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical analysis of the stochastic Stefan problem;Computers & Mathematics with Applications;2024-11

2. A class of space–time discretizations for the stochastic p-Stokes system;Stochastic Processes and their Applications;2024-11

3. SUSHI for a Bingham Flow Type Problem;Numerical Methods and Applications;2023

4. An averaged space–time discretization of the stochastic p-Laplace system;Numerische Mathematik;2022-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3