Multivariate approximation of functions on irregular domains by weighted least-squares methods

Author:

Migliorati Giovanni1

Affiliation:

1. Laboratoire Jacques-Louis Lions, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

Abstract

Abstract We propose and analyse numerical algorithms based on weighted least squares for the approximation of a bounded real-valued function on a general bounded domain $\varOmega \subset \mathbb{R}^d$. Given any $n$-dimensional approximation space $V_n \subset L^2(\varOmega )$, the analysis in Cohen and Migliorati (2017, Optimal weighted least-squares methods. SMAI J. Comput. Math., 3, 181–203) shows the existence of stable and optimally converging weighted least-squares estimators, using a number of function evaluations $m$ of the order $n \ln n$. When an $L^2(\varOmega )$-orthonormal basis of $V_n$ is available in analytic form, such estimators can be constructed using the algorithms described in Cohen and Migliorati (2017, Optimal weighted least-squares methods. SMAI J. Comput. Math., 3, 181–203, Section 5). If the basis also has product form, then these algorithms have computational complexity linear in $d$ and $m$. In this paper we show that when $\varOmega $ is an irregular domain such that the analytic form of an $L^2(\varOmega )$-orthonormal basis is not available, stable and quasi-optimally weighted least-squares estimators can still be constructed from $V_n$, again with $m$ of the order $n \ln n$, but using a suitable surrogate basis of $V_n$ orthonormal in a discrete sense. The computational cost for the calculation of the surrogate basis depends on the Christoffel function of $\varOmega $ and $V_n$. Numerical results validating our analysis are presented.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference22 articles.

1. Near-optimal sampling strategies for multivariate function approximation on general domains. arXiv:1908.01249;Adcock,2019

2. Approximating smooth, multivariate functions on irregular domains. arXiv:1802.00602;Adcock,2018

3. Asymptotics for the Christoffel function for Jacobi like weights on a ball in R$^n$;Bos;New Zealand J. Math,1994

4. Discrete least squares polynomial approximation with random evaluations—application to parametric and stochastic elliptic PDEs;Chkifa;ESAIM Math. Model. Numer. Anal.,2015

5. On the stability and accuracy of least squares approximations;Cohen;Found. Comput. Math.,2013

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3