Asymptotically compatible energy of variable-step fractional BDF2 scheme for the time-fractional Cahn–Hilliard model

Author:

Liao Hong-lin12,Liu Nan1,Zhao Xuan3

Affiliation:

1. College of Mathematics, Nanjing University of Aeronautics and Astronautics , Nanjing 211106, China

2. Key Laboratory of Mathematical Modeling and High Performance Computing of Air Vehicles (NUAA) , MIIT, Nanjing 211106, China

3. School of Mathematics, Southeast University , Nanjing 210096, China

Abstract

Abstract A novel discrete gradient structure of the variable-step fractional BDF2 formula approximating the Caputo fractional derivative of order $\alpha \in (0,1)$ is constructed by a local-nonlocal splitting technique, that is, the fractional BDF2 formula is split into a local part analogue to the two-step backward differentiation formula (BDF2) of the first derivative and a nonlocal part analogue to the L1-type formula of the Caputo derivative. Then a local discrete energy dissipation law of the variable-step fractional BDF2 implicit scheme is established for the time-fractional Cahn–Hilliard model under a weak step-ratio constraint $0.3960\le \tau _{k}/\tau _{k-1}<r^{*}(\alpha )$, where $\tau _{k}$ is the $k$th time-step size and $r^{*}(\alpha )\ge 4.660$ for $\alpha \in (0,1)$. The present result provides a practical answer to the open problem in [SINUM, 57: 218-237, Remark 6] and significantly relaxes the severe step-ratio restriction [Math. Comp., 90: 19–40, Theorem 3.2]. More interestingly, the discrete energy and the corresponding energy dissipation law are asymptotically compatible with the associated discrete energy and the energy dissipation law of the variable-step BDF2 method for the classical Cahn–Hilliard equation, respectively. To the best of our knowledge, such type energy dissipation law is established at the first time for the variable-step L2 type formula of Caputo’s derivative. Numerical examples with an adaptive stepping procedure are provided to demonstrate the accuracy and the effectiveness of our proposed method.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3