Sparsified discrete wave problem involving a radiation condition on a prolate spheroidal surface

Author:

Barucq Hélène1,Fares M’Barek2,Kruse Carola2,Tordeux Sébastien3

Affiliation:

1. EPC Magique 3D - INRIA Bordeaux Sud-Ouest, University of Pau and Pays de l’Adour, E2S-UPPA, LMAP UMR CNRS 5142 - Avenue de l’Université, 64012 Pau, France

2. CERFACS, 42 Avenue Gaspard Coriolis, 31100 Toulouse, France

3. EPC Magique 3D - University of Pau and Pays de l’Adour, E2S-UPPA, LMAP UMR CNRS 5142, INRIA Bordeaux Sud-Ouest - Avenue de l’Université, 64012 Pau, France

Abstract

Abstract We develop and analyse a high-order outgoing radiation boundary condition for solving three-dimensional scattering problems by elongated obstacles. This Dirichlet-to-Neumann condition is constructed using the classical method of separation of variables that allows one to define the scattered field in a truncated domain. It reads as an infinite series that is truncated for numerical purposes. The radiation condition is implemented in a finite element framework represented by a large dense matrix. Fortunately, the dense matrix can be decomposed into a full block matrix that involves the degrees of freedom on the exterior boundary and a sparse finite element matrix. The inversion of the full block is avoided by using a Sherman–Morrison algorithm that reduces the memory usage drastically. Despite being of high order, this method has only a low memory cost.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference35 articles.

1. A fully asynchronous multifrontal solver using distributed dynamic scheduling;Amestoy;SIAM J. Matrix Anal. Appl.,2001

2. Bayliss–Turkel-like radiation conditions on surfaces of arbitrary shape;Antoine;J. Math. Anal. Appl.,1999

3. Construction and performance analysis of local DtN absorbing boundary conditions for exterior Helmholtz problems;Barucq;Research Report,2007

4. Construction and performance assessment of new local DtN conditions for elongated obstacles;Barucq;Appl. Numer. Math.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3