A fully mixed virtual element method for Darcy–Forchheimer miscible displacement of incompressible fluids appearing in porous media

Author:

Dehghan Mehdi1,Gharibi Zeinab1

Affiliation:

1. Department of Applied Mathematics , Amirkabir University of Technology (Tehran Polytechnic), No. 424, Hafez Ave., 15914 Tehran, Iran

Abstract

Abstract The incompressible miscible displacement of two-dimensional Darcy–Forchheimer flow is discussed in this paper, and the mathematical model is formulated by two partial differential equations, a Darcy–Forchheimer flow equation for the pressure and a convection–diffusion equation for the concentration. The model is discretized using a fully mixed virtual element method (VEM), which employs mixed VEMs to solve both the Darcy–Forchheimer flow and concentration equations by introducing an auxiliary flux variable to ensure full mass conservation. By using fixed point theory, we proved the stability, existence and uniqueness of the associated mixed VEM solution under smallness data assumption. Furthermore, we obtain optimal error estimates for concentration and auxiliary flux variables in the $\texttt {L}^{2}$- and $\textbf {L}^{2}$-norms, as well as for the velocity in the $\textbf {L}^{2}$-norm. Finally, several numerical experiments are presented to support the theoretical analysis and to illustrate the applicability for solving actual problems.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3