Range-relaxed criteria for choosing the Lagrange multipliers in nonstationary iterated Tikhonov method

Author:

Boiger R1,Leitão A2,Svaiter B F3

Affiliation:

1. Materials Center Leoben Forschung Gmbh, Roseggerstrae, Leoben, Austria; former: Insitut für Mathematik, Alpen-Adria Universität Klagenfurt, Universitätsstrasse, Klagenfurt, Austria

2. Department of Mathematics, Federal University of St. Catarina, Florianópolis, Brazil

3. IMPA, Estr. Dona Castorina, Rio de Janeiro, Brazil

Abstract

Abstract In this article we propose a novel nonstationary iterated Tikhonov (NIT)-type method for obtaining stable approximate solutions to ill-posed operator equations modeled by linear operators acting between Hilbert spaces. Geometrical properties of the problem are used to derive a new strategy for choosing the sequence of regularization parameters (Lagrange multipliers) for the NIT iteration. Convergence analysis for this new method is provided. Numerical experiments are presented for two distinct applications: (I) a two-dimensional elliptic parameter identification problem (inverse potential problem); and (II) an image-deblurring problem. The results obtained validate the efficiency of our method compared with standard implementations of the NIT method (where a geometrical choice is typically used for the sequence of Lagrange multipliers).

Funder

Alpen-Adria-Universität Klagenfurt

Karl Popper Kolleg

Carinthian Economic Promotion Fund

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Alexander von Humboldt Foundation

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference31 articles.

1. Mathematics and Its Applications;Bakushinsky,2004

2. Advanced Lectures in Mathematics;Baumeister;Stable Solution of Inverse Problems,1987

3. Image deblurring with Poisson data: from cells to galaxies;Bertero;Inverse Problems,2009

4. Advanced Lectures in Mathematics;Bertero;Introduction to Inverse Problems in Imaging,1998

5. Iterative solution of ill-posed problems: a survey;Brill,1987

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3