Weak and strong error analysis of recursive quantization: a general approach with an application to jump diffusions

Author:

Pagès Gilles1,Sagna Abass2

Affiliation:

1. Laboratoire de Probabilités, Statistique et Modélisation, Sorbonne Université, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8001, case 158, 4, pl. Jussieu, F-75252 Paris Cedex 5, France

2. ENSIIE & Laboratoire de Mathématiques et Modélisation d’Evry, Université d’Evry Val-d’Essonne, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8071, 23, Boulevard de France, 91037 Évry, France

Abstract

Abstract Observing that the recent developments of spatial discretization schemes based on recursive (product) quantization can be applied to a wide family of discrete time Markov chains, including all standard time discretization schemes of diffusion processes, we establish in this paper a generic strong error bound for such quantized schemes under a Lipschitz propagation assumption. We also establish a marginal weak error estimate that is entirely new to our best knowledge. As an illustration of their generality, we show how to recursively quantize the Euler scheme of a jump diffusion process, including details on the algorithmic aspects grid computation, transition weight computation, etc. Finally, we test the performances of the recursive quantization algorithm by pricing a European put option in a jump Merton model.

Funder

Chaire ‘Risques financiers’

Chaire ‘Markets in Transition’

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference23 articles.

1. Iterative procedures for nonlinear integral equations;Anderson;J. ACM,1965

2. A quantization algorithm for solving discrete time multidimensional optimal stopping problems;Bally;Bernoulli,2003

3. A backward Monte Carlo approach to exotic option pricing;Bormetti;European J. Appl. Math.,2018

4. Quantized calibration in local volatility;Callegaro;Risk Mag.,2015

5. Pricing via recursive quantization in stochastic volatility models;Callegaro;Quant. Finance,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3