Interpolation and stability properties of low-order face and edge virtual element spaces

Author:

Beirão da Veiga L12,Mascotto L13

Affiliation:

1. Dip. di Matematica e Applicazioni , Università degli Studi di Milano-Bicocca, Italy

2. IMATI-CNR, 27100 Pavia , Italy

3. Fakultät für Mathematik , Universität Wien, 1090 Vienna, AustriaIMATI-CNR, 27100 Pavia, Italy

Abstract

Abstract We analyse the interpolation properties of two-dimensional and three-dimensional low-order virtual element (VE) face and edge spaces, which generalize Nédélec and Raviart–Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated $L^2$-discrete bilinear forms, which typically appear in the VE discretization of problems in electromagnetism.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference22 articles.

1. Basic principles of virtual element methods;Beirão da Veiga;Math. Models Methods Appl. Sci.,2013

2. Virtual element approximation of 2D magnetostatic problems;Beirão da Veiga;Comput. Methods Appl. Mech. Engrg.,2017

3. Stability analysis for the virtual element method;Beirão da Veiga;Math. Models Methods Appl. Sci.,2017

4. A family of three-dimensional virtual elements with applications to magnetostatics;Beirão da Veiga;SIAM J. Numer. Anal.,2018

5. Lowest order virtual element approximation of magnetostatic problems;Beirão da Veiga;Comput. Methods Appl. Mech. Engrg.,2018

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3