Affiliation:
1. Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 USA
Abstract
Abstract
The limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is widely used for large-scale unconstrained optimization, but its behavior on nonsmooth problems has received little attention. L-BFGS (limited memory BFGS) can be used with or without ‘scaling’; the use of scaling is normally recommended. A simple special case, when just one BFGS update is stored and used at every iteration, is sometimes also known as memoryless BFGS. We analyze memoryless BFGS with scaling, using any Armijo–Wolfe line search, on the function $f(x) = a|x^{(1)}| + \sum _{i=2}^{n} x^{(i)}$, initiated at any point $x_0$ with $x_0^{(1)}\not = 0$. We show that if $a\ge 2\sqrt{n-1}$, the absolute value of the normalized search direction generated by this method converges to a constant vector, and if, in addition, $a$ is larger than a quantity that depends on the Armijo parameter, then the iterates converge to a nonoptimal point $\bar x$ with $\bar x^{(1)}=0$, although $f$ is unbounded below. As we showed in previous work, the gradient method with any Armijo–Wolfe line search also fails on the same function if $a\geq \sqrt{n-1}$ and $a$ is larger than another quantity depending on the Armijo parameter, but scaled memoryless BFGS fails under a weaker condition relating $a$ to the Armijo parameter than that implying failure of the gradient method. Furthermore, in sharp contrast to the gradient method, if a specific standard Armijo–Wolfe bracketing line search is used, scaled memoryless BFGS fails when $a\ge 2 \sqrt{n-1}$regardless of the Armijo parameter. Finally, numerical experiments indicate that the results may extend to scaled L-BFGS with any fixed number of updates $m$, and to more general piecewise linear functions.
Funder
Simons Foundation
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Mathematics,General Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献