Affiliation:
1. School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, P.R. China
2. Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, P.R. China
Abstract
Abstract
As is well known, piecewise linear polynomial collocation (PLC) and piecewise quadratic polynomial collocation (PQC) are used to approximate the weakly singular integrals $$\begin{equation*}I(a,b,x) =\int^b_a \frac{u(y)}{|x-y|^\gamma}\textrm{d}y, \quad x \in (a,b),\quad 0< \gamma <1,\end{equation*}$$which have local truncation errors $\mathcal{O} (h^2 )$ and $\mathcal{O} (h^{4-\gamma } )$, respectively. Moreover, for Fredholm weakly singular integral equations of the second kind, i.e., $\lambda u(x)- I(a,b,x) =f(x)$, $\lambda \neq 0$, the global convergence rates are also $\mathcal{O} (h^2 )$ and $\mathcal{O} (h^{4-\gamma } )$ by PLC and PQC in Atkinson (2009, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press). In this work we study the following nonlocal problems, which are similar to the above Fredholm integral equations: $$\begin{equation*}\int^b_a \frac{u(x)-u(y)}{|x-y|^\gamma}\textrm{d}y =f(x), \quad x \in (a,b),\quad 0< \gamma <1. \end{equation*}$$In the first part of this paper we prove that the weakly singular integrals $I(a,b,x)$ have optimal local truncation error $\mathcal{O}(h^4\eta _i^{-\gamma } )$ by PQC, where $\eta _i=\min \left \{x_i-a,b-x_i\right \}$ and $x_i$ coincides with an element junction point. Then the sharp global convergence orders $\mathcal{O}\left (h\right )$ and $\mathcal{O} (h^3)$ by PLC and PQC, respectively, are established for nonlocal problems. Finally, numerical experiments are shown to illustrate the effectiveness of the presented methods.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Computational Mathematics,General Mathematics
Reference25 articles.
1. Mathematical Surveys and Monographs, vol. 165. Providence.;Andreu-Vaillo,2010
2. The numerical solution of Fredholm integral equations of the second kind;Atkinson;SIAM J. Numer. Anal.,1967
3. On some nonlocal evolution equations arising in materials science;Bates,2006
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献