Comparing the Value of Data Visualization Methods for Communicating Harms in Clinical Trials

Author:

Qureshi Riaz,Chen Xiwei,Goerg Carsten,Mayo-Wilson Evan,Dickinson Stephanie,Golzarri-Arroyo Lilian,Hong Hwanhee,Phillips Rachel,Cornelius Victoria,McAdams DeMarco Mara,Guallar Eliseo,Li Tianjing

Abstract

Abstract In clinical trials, harms (i.e., adverse events) are often reported by simply counting the number of people who experienced each event. Reporting only frequencies ignores other dimensions of the data that are important for stakeholders, including severity, seriousness, rate (recurrence), timing, and groups of related harms. Additionally, application of selection criteria to harms prevents most from being reported. Visualization of data could improve communication of multidimensional data. We replicated and compared the characteristics of 6 different approaches for visualizing harms: dot plot, stacked bar chart, volcano plot, heat map, treemap, and tendril plot. We considered binary events using individual participant data from a randomized trial of gabapentin for neuropathic pain. We assessed their value using a heuristic approach and a group of content experts. We produced all figures using R and share the open-source code on GitHub. Most original visualizations propose presenting individual harms (e.g., dizziness, somnolence) alone or alongside higher level (e.g., by body systems) summaries of harms, although they could be applied at either level. Visualizations can present different dimensions of all harms observed in trials. Except for the tendril plot, all other plots do not require individual participant data. The dot plot and volcano plot are favored as visualization approaches to present an overall summary of harms data. Our value assessment found the dot plot and volcano plot were favored by content experts. Using visualizations to report harms could improve communication. Trialists can use our provided code to easily implement these approaches.

Publisher

Oxford University Press (OUP)

Subject

General Medicine,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3